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The response of a convective flow to spatially periodic forcing a t  a period different 
from the critical wavelength is investigated experimentally. For reasons of experi- 
mental convenience, we utilize an electrohydrodynamic instability in a thin layer of 
nematic liquid. With this system, a sample containing several hundred rolls is easily 
obtained, and periodic forcing is imposed electrically using a specially designed 
interdigitated electrode. Several novel flows with multiple periodicities are found. 
They may be broadly classified as commensurate (phase-locked) or incommensurate 
(quasi-periodic) flows, depending on whether the dominant periodicity of the per- 
turbed flow and the periodicity of the forcing are in the ratio of small integers. Near 
the instability threshold and for weak forcing, an approximation of slow spatial 
variations is satisfied. I n  that case, the flows can be described quantitatively by an 
amplitude equation. We note a close connection between these hydrodynamic 
phenomena and a problem of competing periodicities that  occurs in statistical 
mechanics. This relationship leads us to suggest the use of a discontinuous function 
for describing certain incommensurate flows in which non-repeating short and long 
groups of rolls are observed to  occur in an irregular sequence. We also note, as 
predicted by Pal & Kelly, that  two-dimensional forcing can lead to  a three- 
dimensional flow. 

1. Introduction 
Many of the simplest hydrodynamic instabilities yield spatially periodic flows that 

break the translational symmetry of the system. The rolls that  occur in Taylor- 
Couette flow and Rayleigh-BBnard convection are good examples. In  this paper, we 
address the question of how the flows resulting from these instabilities are modified 
when the symmetry of the system is broken by an imposed spatially periodic forcing 
at  a wavenumber that may differ from the critical wavenumber of the instability. 
We shall sometimes refer to  this as a problem of competing periodicities. 

This question was first raised theoretically by Kelly & Pal a few years ago in the 
context of thermal convection (Kelly & Pal 1978; Pal & Kelly 1978, 1979). They 
carefully considered the immediate region of the transition and showed that, for 
certain forcing periodicities, the sharp bifurcation is replaced by a smooth (imperfect) 
one. They also showed that two-dimensional thermal forcing can lead to  three- 
dimensional flow. 

There has been little experimental work on the problem of competing periodicities 
near instability thresholds. (However, periodic forcing has been used to  create flows 
with a desired predetermined wavenumber; see Chen & Whitehead 1968; Busse & 
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Whitehead 1971.) One reason may be that the phenomena are subtle and easily 
masked by finite-size effects. For example, a convective flow containing ten rolls 
would clearly be too small to exhibit the phenomena of interest adequately. 

In  this paper, we utilize an electrohydrodynamic (EHD) instability that leads to 
convection in a thin fluid layer of nematic liquid crystal less than 200 pm thick. This 
system has many advantages for studying competing periodicities. First, stable 
convective flows with hundreds of two-dimensional rolls can easily be produced; 
finite-size effects are largely eliminated. Secondly, the anisotropy of the fluid can be 
used to stabilize the pattern against three-dimensional perturbations, so that the 
phenomena of competing periodicities become largely two-dimensional. Thirdly, the 
flow can be forced at  a precisely defined wavenumber with an easily controlled 
amplitude using a photolithographically etched electrode. The ratio between the 
forcing periodicity and the natural roll size is continuously adjustable by varying the 
thickness of the nematic layer. Finally the patterns are easily observed in real space 
by optical microscopy because the flow produces strong spatial variations in the 
index of refraction. Digitization of the optical intensity patterns and spatial Fourier 
analysis allow quantitative analysis of the flows. 

A considerable variety of novel (and beautiful) hydrodynamic flows with multiple 
periodicities were discovered in this investigation. Broadly speaking, they fall into 
two distinct categories : commensurate flows, which occur when the dominant 
periodicity of the fluid and the forcing period are in the ratio of small integers; and 
incommensurate flows, in which this is not the case. The various flows are realized 
by changing either the roll size of the forcing strength or both. 

We find that each of these broad categories can be subdivided into several distinct 
flows. One particularly interesting incommensurate flow takes the form of a slow 
phase modulation in which the widths of the convective rolls are not identical. Most 
of the width variation occurs in narrow regions that can be quantitatively described 
by solutions to the pendulum equation. A theoretical explanation of these incom- 
mensurate flows has recently been developed by Coullet (1986). The explanation 
essentially depends on only two factors. (i) The system is near threshold so that the 
flow can be described by an amplitude equation, a one-dimensional partial differential 
equation involving slow space and time variations of the amplitude of the rolls. (ii) 
Symmetry considerations uniquely specify an additional term in the amplitude 
equation that arises from the forcing. The generality of this approach suggests that 
similar incommensurate states should occur in many other periodically forced 
hydrodynamic systems. 

Distinctly different types of incommensurate ordering occur for other parameter 
ranges, One of them bears considerable resemblance to one-dimensional incommen- 
surate atomic arrays, known as quasicrystals, found in solid-state physics. In another 
case, the competing periodicities lead to a three-dimensional flow. 

This paper describes the commensurate and incommensurate patterns found in 
this non-equilibrium system. (A few of the results on incommensurate patterns have 
been reportedelsewhere (Lowe, Gollub & Lubensky 1983; Lowe & Gollub 1985a).) We 
first describe in $2 the experimental configuration including the electrohydrodynamic 
instability and the experimental apparatus. Relevant theoretical work is presented 
in $3. Examples of commensurate patterns are shown in $4, and incommensurate 
states are described in $5 .  Finally, in $6, we discuss and summarize the data in the 
context of the theoretical work. 
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2. Experimental configuration 
2.1. Description of the electrohydrodynamic instability 

Nematic liquid crystals are anisotropic organic fluids composed of rod-shaped 
molecules whose local mean orientation is described by a ‘director field’. Their 
hydrodynamic behaviour is more complex than that of isotropic fluids because of the 
coupling between the director and velocity fields. 

Many instabilities may develop in nematics; the one of particular interest in this 
paper occurs in a thin nematic layer (20-200pm thick) for which the dielectric 
constants and conductivities parallel to and perpendicular to the director satisfy the 
following relationships : ell -el < 0 and all - aI > 0. The instability is produced when 
a d.c. or low-frequency ax. voltage across the layer exceeds a critical value that is 
independent of the layer depth d. The resulting cellular flow resembles Rayleigh- 
BBnard convection, and the resulting rolls are often called ‘Williams domains ’. The 
width of each roll is approximately equal to the layer depth. The circulation period 
ranges from a few seconds to fractions of a second, depending on d (Penz 1971). 
Accompanying the flow is a static spatially periodic distortion in the director field; 
it remains perpendicular to the roll axis, but is tipped out of the plane of the plates 
by the flow. 

The basic physical mechanism of the instability is complex but not hard to 
appreciate. In the absence of an applied field, the director is aligned parallel to the 
plates, in a particular orientation specified by surface treatment of the electrodes. 
When a field is applied, small fluctuations in the local director orientation lead to 
charge accumulation due to the anisotropic conductivity of the fluid. Destabilization 
results from a force on the charges by the electric field, causing the fluid to flow. The 
accompanying viscous torque amplifies the fluctuations. This leads to an instability 
when the destabilizing torque is larger than the elastic and dielectric torques that 
suppress the fluctuations in the director orientation. (For a review, see Goossens 
1978.) 

2.2. Sample cell 
The experimental configuration consists of a thin layer of nematic liquid crystal 
(4-methoxybenzylidene-4’-n-butylaniline or MBBA) that fills the gap between two 
glass plates coated with a transparent conductive material (In203). One of the 
conductive films is photolithographically etched to form an interdigitated electrode. 
A thin convoluted line (15 pm wide) is removed to divide the electrode into two 
electrically isolated regions, A and B. As shown in figure 1 ( a ) ,  this results in a set 
of 120 interlaced fingers, to which two different voltages, V,  and V,, may be applied. 
The other film is grounded (see figure 1 b ) .  This leads to a spatially periodic electric 
field with period 1, = 200 pm over a portion of the sample with dimensions 
12 mm x 8 mm. 

An analytic expression for the potential can be obtained by a Fourier expansion, 
if the gaps between the fingers are neglected. A diagram of the resulting equipotential 
and electric-field lines in the region bounded by the two electrodes is shown in figure 2. 
One period of the forcing, drawn to scale, is exhibited using realistic parameter 
values given in the caption. The spatially periodic component of the field is relatively 
small. 

To achieve a uniform director orientation in the absence of periodic forcing, the 
electrodes are treated in one of two ways. The first is the application of a polymer 
coating followed by gentle unidirectional rubbing with velveteen. The second is a 
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FIGURE 1. Schematic diagram of the interdigitated electrode whose 120 fingers provide a spatially 
periodic electric field. (a) A convoluted line separates the conductive film 
isolated regions, A and B. ( b )  Configuration of the cell. 

into two eleitrioally 
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FIGURE 2. One period of the equipotential and electric-field lines over the interdigitated electrode. 
The layer depth is 50 pm. Two voltages are applied to the lower electrode, located a t  z = 0 pm, 
with the values V ,  = 6.5 V for x < 100 pm and V ,  = 5.9 V for x > 100 pm. 

thin-film evaporation of SiO on to the electrode at oblique incidence (Urbach, Boix 
& Guyon 1974). Both methods are believed to create a textured surface, and 
alignment occurs from minimization of elastic strain in the nematic (Berreman 1972). 
When the instability is induced, the roll axis is always perpendicular to the director 
orientation, even if the applied voltage is uniform. We select the roll axis to be 
parallel to the electrode fingers. For all of the results except those presented in $5.3, 
the surface treatment was a rubbed polymer coating. 

The glass plates are mounted on to two rigid steel plates whose spacing is 
controlled by three differential micrometers. This arrangement allows the layer 
depth, and hence the natural roll size, to be varied with a resolution of about a micron 
over the range 20-150 pm. The entire arrangement rests on the translation stage of 
a microscope and is maintained at a constant temperature of 20.0 & 0.5 "C. 

2.3. Experimental procedure 
The patterns are studied as a function of two parameters. The first is the ' unperturbed ' 
roll size $lo that is obtained in the absence of periodic forcing. (The width of two rolls 
is I,,, the period of the instability.) The roll size is varied between 20 and 150 pm by 
adjusting the layer thickness. It can be determined by Fourier analysis of data 
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FIGURE 3. Schematic diagram of the EHD instability and its optical properties. An electric field 
applied across the fluid layer induces a flow pattern (dashed lines) similar to Rayleigh-BBnard 
convection. The director orientation varies sinusoidally. Incoming polarized light is focused by the 
layer to form real images above the cell and virtual images, designated underneath by x . We 
observe the real images. 

obtained from a region of the sample where the applied field is uniform. (Starting 
from V,, the voltage is increased by increments of a few hundredths of a volt over 
a period of 1-2 h to avoid the formation of dislocations in the roll pattern.) 

The second parameter is the strength of the periodic forcing, which we define in 
the following way. The two slightly different a.c. voltages (50 Hz), applied to the two 
parts of the lower electrode are always greater than the threshold V ,  ( x 6 V r.m.s.) 
for the onset of the EHD instability, but less than 1.12Ve. The mean distance above 
threshold, specified by 6 = ( Vav- V,)/V,, where V,, = +( 77, + V,), is held constant. 
The forcing strength is then defined as the normalized difference a = I V ,  - V ,  I/ V,. 

The system is initially maintained a t  a = 0 for about an hour in order to obtain 
a sample that is essentially unmodulated and free of dislocations. (However, there 
are effects due to a small residual forcing a t  a = 0;  these will be discussed later.) Then 
a is usually increased by small increments every 15-30 min, an interval sufficiently 
long that the patterns may reach a steady state. All of the patterns presented in this 
paper are essentially time-independent. 

2.4. Imaging and data analysis 
The flow is easily observed by polarized transmission microscopy, since the variable 
director orientation and anisotropy in the index of refraction give rise to strong 
refraction (see figure 3). Above the layer, light is focused by the nematic to  form a 
bright line a t  each roll boundary (Penz 1971). (Virtual images are formed below the 
layer, and are displaced horizontally from the real images by half a roll.) 

The patterns are recorded on videotape using a vidicon camera mounted on the 
microscope. Images are later digitized from the tape with a resolution of 320 x 240 
pixels and 8-bit accuracy in the light-intensity levels. 

In order to obtain accurate roll-position measurements, we average the signal from 
many video frames to reduce noise. To locate the roll boundaries, parabolic fits are 
applied to the maxima of the light intensities. Wavenumber measurements are also 
obtained by computing one- and two-dimensional Fourier transforms of the light- 
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intensity profiles with standard FFT methods. After squaring, the resulting power 
spectra are displayed on a graphics monitor and analysed interactively. In some cases 
power spectra from different parts of the sample are averaged to reduce noise. 

3. Theoretical Background 
The effects of spatially periodic forcing in thermal convection were first addressed 

theoretically by Kelly & Pal (1978) and by Pal & Kelly (1978, 1979). The forcing was 
introduced through either spatially periodic variations in the temperature at  the 
boundaries, or a periodically varying layer depth. They explored the nature of the 
bifurcation to the convecting state using linear stability analysis, for various ratios 
of the forcing wavenumber k, to the critical wavenumber k,. The threshold was found 
to be modified in most cases. The analysis specifically considered both uniform roll 
solutions, and three-dimensional superpositions of obliquely oriented rolls. The latter 
were found to have a lower bifurcation threshold than the two-dimensional structures 
in many cases, implying that three-dimensional convection can arise from two- 
dimensional spatial forcing. 

Effects due to competing periodicities occur in many solid-state systems. For 
example, atoms adsorbed on a solid crystalline surface may form either commensurate 
or incommensurate patterns, depending on the relative sizes of the adsorbed and 
substrate atoms. The simplest model for this process, known as the Frenkel- 
Kontorova (FH) model (reviewed by Pokrovsky & Talapov 1984), turns out to be 
surprisingly relevant to the present hydrodynamic experiments. It consists of a chain 
of massive particles connected by springs, in the presence of a periodic potential. 
At the simplest level, the problem is to determine the equilibrium positions of 
the particles with respect to the potential. Although the model is discrete, Frank & 
van der Merwe (1949) discovered that in the limit of a weak sinusoidal potential, 
incommensurate states occur in which the displacements of the particles from the 
potential minima are described by continuous functions that are solutions to the 
sine-Gordon equation. 

More recently, Aubry & Andrh (1979) proved that both commensurate and 
incommensurate states of two distinct types occur in the FK model. The latter can 
be described in terms of a functionf(nA) defined for all n by 

f (nA)  = nA-x,  

where x ,  denotes the position of the nth particle, A is the average spacing between 
the particles, and f is a periodic function with the period of the potential. A t  small 
forcing strengths, f is analytic, and the particle spacings vary gradually along the 
chain. On the other hand, when the forcing strength becomes sufficiently large, f may 
be discontinuous or non-analytic. 

Amplitude equations, first introduced by Newel1 & Whitehead (1969) and Segal 
(1969), are widely used to understand the slow variations in space and time of a 
complex envelope or amplitude function A(%, t )  of the hydrodynamic fields. Since 
they arise from an expansion in powers and gradients of A(x,  t ) ,  they are useful only 
relatively near the onset of an instability. Motivated by preliminary results of the 
present investigation (Lowe & Gollub 1985a), Coullet (1986) showed that symmetry 
considerations uniquely specify the lowest-order contribution that periodic forcing 
makes to the amplitude equation: 

A, = sA-IA12A+AZZ+a(A*)n-1ein*". 
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The first four terms represent the form of the amplitude equation in the absence of 
spatial forcing. The quantity e is the distance above onset; q is given by k, = n( k, + q )  
where n is an integer; and a is the forcing strength. The misfit q must be much smaller 
than k,; this is the near-resonant forcing case. 

The dynamics of this equation can be expressed in terms of a minimization 
principle. The quantity that is minimized is identical with the Hamiltonian of the 
FK model in the continuum limit. These results pertain to a range of parameters 
corresponding to weak forcing and small values of the misfit q. Thus, commensurate 
or phase-locked states occur, as well as incommensurate states in which the 
deviations of the roll positions from their commensurate values are correspondingly 
described by rotating solutions to the pendulum equation. The FK model, therefore, 
has some relevance to the present experiments even though it is not specifically 
hydrodynamic and does not include dissipation or diffusive relaxation. 

Theoretical work using an amplitude-equation approach has also been presented 
by Lubensky & Ingersent (1986). They find that three-dimensional flows may be 
produced under certain circumstances when periodic forcing is present. 

4. Commensurate states and the phase diagram 
We explored the effects of external forcing by varying the forcing strength a and 

the ratio l o / l l  of periodicities. When a is non-zero, a variety of modulated structures 
appear. The simplest are the commensurate or phase-locked states, in which the 
period of the roll pattern is a multiple of 1,. The more complicated incommensurate 
states are discussed in $5 .  

4.1. Low-order commensurate states 
Three low-order commensurate (C) states are seen in this experiment, corresponding 
to phase-locking a t  1/1, 1/2 and 1/3. The notation m/n for the C-state indicates that 
n hydrodynamic periods (2n rolls) occur in m periods of the forcing (a distance equal 
to mZJ. Photographs of several low-order (m = 1)  commensurate states are presented 
in figure 4. (Not all of the sample is shown; the photographs illustrate only + of the 
total sample area.) The electrode fingers are oriented vertically and are not directly 
visible. The centres of the convective rolls, which are parallel to the fingers, are 
represented by the dark stripes in the photos. The interaction between the natural 
period and the imposed one leads to perfect phase-locking over the entire inter- 
digitated electrode. (The slight curvature in the rolls, noticeable in figure 4, is from 
photographing the patterns from a TV monitor. The rolls are straight in the digitized 
data.) 

In order to exhibit the structure of the C-states, we present a graph of the 
transmitted light intensity across a C 1/3 pattern (see figure 5a). Each oscillation 
represents a single roll. There are six rolls for every period of the forcing, but not 
all of them correspond to the same light intensity. The graph is best described as a 
superposition of a slow oscillation a t  the forcing wavelength l , ,  and a fast oscillation 
at  an average wavelength of ZJ6. We believe that the underlying flow pattern may 
also be described by two superimposed roll structures with roll widths, 1, and ZJ6. 

The spatial structure may be understood more readily in the power spectrum, 
shown on a 1ogarithmic.scale in figure 5 ( b ) .  The two dominant peaks are located at  
49.4k2.2 em-' (w l/lJ and 298.6f2.5 cm-l (w 6/1,). The errors are obtained from 
the line widths of the peaks a t  half maximum. The proof that this pattern is 
commensurate comes from the fact that all peaks in the spectrum are located at 



260 M .  Lowe, B. S. Albert and J .  P. Collub 

FIGURE 4. Low-order commensurate states. The convective rolls are aligned parallel to the fingers, 
which are not directly visible in the photos. (a )  C 111 state for lo / l l  = 0.928 and a = 0.097. ( b )  C 
112 state for l 0 / l 1  = 0.460 and a = 0.114. (c) C 113 State for lo / l l  = 0.370 and a = 0.114. 

multiples of a single wavenumber; in this case, the fundamental component is k,. 
(There is structure at 2k,, 3k, and 5k,,  but we do not have a quantitative 
understanding of it.) 

4.2.  High-order commensurate states 

Two examples of high-order commensurate states are shown in figure 6 ;  they 
correspond to phaselocking ratios of 213 and 215. In both cases the period of 
the pattern is 21,. (In interpreting the photographs, recall that the roll width is the 
spacing between two bright stripes.) One distinction between these patterns and the 
low-order commensurate states (aside from the longer period) is the presence of 
domain walls, analogous to grain boundaries in a crystal. These walls separate 
commensurate regions, which are displaced by a multiple of 1, relative to each other; 
in figure 6 the shift is exactly 1,. 

In addition to the intensity variations, the C 215 pattern exhibits strong phase 
modulations in the roll positions with a period 21,. We believe that this pattern can 
be best understood by a subgrouping of the pattern into alternating long (L) and 
short (S) ‘blocks’ consisting of 6 and 4 rolls respectively. The C 215 state can then 
be described (when grain boundaries are absent) by the sequence LSLSLS . . . . The 
average block size is E l ,  but the ratio of the widths of the short and long blocks is 
0.87. Thus the roll pattern in each group is similar to, but not exactly the same as, 
the low-order commensurate states 113 or 112. The importance of this subgrouping 
is described in more detail in $5 .2 .  
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FIGURE 5. (a )  Intensity profile of the C 1/3 state, shown in figure 4(c). The pattern is characterized 
by a slow modulation with period I, superimposed on a fast oscillation with period lJ6. ( b )  
Corresponding power spectrum. Two dominant wavenumbers appear at k, = i/ll and 6k,, 
corresponding to the slow and fast osciilations. All other peaks in the power spectrum are located 
at  multiples of k,. 

FIQURE 6. High-order commensurate states with grain boundaries. (a )  C 213 state for lo/ll = 0.656 
and a = 0.114. ( b )  C 2/5 state for l o / l l  = 0.406 and a = 0.081. The structure may be subdivided 
into long and short blocks. 

Other commensurate states were also noted, including C 5/14, 3/7, 3/8, 3/5 and 
3/4. The locking is weak for these states, however, and the commensuration only 
extends over a few periods of the forc,ing. Defects and domain walls are prevalent 
in these patterns. Because of the limited spatial coherence, it is usually difficult to 
classify them unambiguously. 
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4.3. Phase diagram 
The relationships among the commensurate states may be summarized in a phase 
diagram, shown in figure 7, for fixed 6 = 0.057. The vertical axis represents the 
strength of the forcing. The horizontal axis is the ratio lo / l l  of the two lengthscales. 
Based on several hundred data points, five commensurate regimes (shaded areas) are 
indicated in the graph, corresponding to C 1/1, 3/4, 2/3, 1/2 and 1/3. Except for 
the C 1/2 tongue, each region widens as a is increased; this is a sign of nonlinear 
coupling between the rolls and the forcing, leading to stronger phaselocking at  larger 
values of a. Between the commensurate regions, incommensurate structures are 
found. The uncertainty in the position of the commensurate boundaries is approxi- 
mately kO.01 horizontally. (In the blank region above the C 1/1 and 3/4 states, no 
observation was made.) 

Certain commensurate states are not marked on the phase diagram, because they 
contain numerous defects. The most prominent omission is the C 2/5 state, located 
between the C 1/3 and 1/2 regions; more details are provided in $5.2. The other states 
are extremely narrow. 

One surprising feature of the phase diagram is the non-zero width of the tongues 
at  a = 0:  phase-locking occurs even when V ,  = V,. This is due to the finite width 
of the etched line that divides the two regions of the inter-digitated electrode. When 
a = 0, this line causes the voltage near the surface of the electrode to be non-uniform. 
A calculation of the equipotential lines throughout the layer indicates that voltage 
variations near the surface are about 8% of V ,  and have a period of 100 pm. This 
is comparable with typical values of V,- V ,  and is evidently sufficient to cause 
commensuration at a = 0. The C 1/2 and 1/1 tongues are affected most strongly. In 
fact, the C 1/2 tongue is broadest at a = 0. 

4.4. Devil’s staircase 
The organization of the commensurate states may also be presented at each value 
of a by a graph of the dominant periodicity of the modulated patterns as a function 
of Zo/ll. One example is shown in figure 8 for a = 0.065. The vertical axis represents 
(in units of 11) the inverse 1 of the mean wavenumber of the modulated pattern, 
obtained from power-spectral measurements. In the figure, clear plateaux appear at  
Z/1, = 1.0,0.75,0.5 and 0.33, corresponding to commensurate states a t  1/1, 3/4, 1/2 
and 1/3 respectively. Other commensurate states, such as C 2/5 and C 2/3, are 
obscured by the scatter in the plot, which is a consequence of the finite sample size. 
A graph of this type, with an infinite number of plateaux, is called a ‘devil’s staircase’ 
(Aubry 1983). 

The incommensurate states occur between the plateaux. We have studied the 
nature of the commensurate-to-incommensurate (C/I)  transition for different values 
of the forcing strength. The clearest transition occurs near the C 1/1 state. For a = 0 
the variation of 1 with I,, is smooth. As a is increased, the plateau at 1/1, = 1.0 
develops, but the variation of 1 with lo remains continuous. When a 2 0.05, the curve 
becomes discontinuous a t  the step, and the amplitude of the jump increases with a. 
The onset of this discontinuity is shown by a point on the boundary of the C 1/1 state 
in the phase diagram (see figure 7) .  The change from a continuous to a discontinuous 
transition is analogous to a tricritical point in the study of phase transitions. Further 
discussion of the C/I  transition may be found elsewhere (Lowe & Gollub 1985a). 
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FIQTJRE 7. Phase diagram as a function of Z& and the dimensionless modulation strength a lor 
E = 0.057. The commensurate regions are represented by the shaded areas. The incommensurate 
regions are unshaded. Discommensurations (DC) and quasi-periodic sequences are found in certain 
incommensurate areas. The dot on the C 1/1 phase boundary is the point at which the C/I 
transition becomes discontinuous. 
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FIGURE 8. Variation of the inverse I of the mean wavenumber with the unperturbed roll size 1, (in 
units of ZI) for a = 0.065 and E = 0.057. Commensurate regions are represented by plateaux. Graphs 
of this type, with an infinite number of plateaux are called ‘devil’s staircases’. 

5. Incommensurate states 
Over large ranges of E , / E , ,  incommensurate patterns appear with structures 

characterized by amplitude and phase modulation of the rolls. To accommodate the 
forcing period, these states have a more complicated structure than the commensurate 
patterns described earlier. Three major types of incommensurate patterns are 
presented below. The first can be quantitatively described as a discommensuration 
lattice. The second appears to form quasi-periodic sequences described by a discon- 
tinuous hull function (defined in $3). The last is a three-dimensional flow with a lattice 
of kinks. 

5.1. Discommensuration arrays 
Incommensurate or quasi-periodic states containing discommensurations (see 
figure 9) are found over a substantial range in a and I, - for example between the 
314 and 1/1 C phase boundaries, as shown in figure 7. Over most of the pattern, the 
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t t  t t t 
FIGURE 9. Incommensurate states characterized by discommensurations for a = 0.032. (a) The 
discommensurations, indicated by arrows, are regions of compression of the rolls (Zo/Zl  = 0.866). 
(b )  The discommensurations are more closely spaced. A defect in the upper left corner (not visible 
in the photograph) causes the lattice to shift towards the right (.lo/& = 0.816). 

rolls are nearly locked to the external forcing with a period similar to that of a C 1/1 
pattern. Between these regions, the rolls are locally compressed. Figure 9 (a) contains 
three compressed regions (marked by arrows) ; they may be called discommensura- 
tions. They are equally spaced and form a superlattice that is nearly parallel to the 
rolls. Another lattice, with more narrowly spaced discommensurations, is shown in 
figure 9 (b). Sometimes such discommensurations are loosely described as solitons. 

To exhibit the regions of compression quantitatively, we have studied these 
modulated patterns using digital image analysis. The size of each roll in figure 9(a) 
is shown in figure lO(a) .  The roll size varies periodically across the sample, nearly 
attaining the commensurate value of 100 pm in some regions. The areas of localized 
compression are the discommensurations. A phase variable $(xn) may be defined to 
denote the location x, of the nth roll pair with respect to the external forcing: 

The phase is plotted as a function of position in figure 10 ( b ) .  Each discommensuration 
corresponds to a phase change of 2n, or the insertion of an extra roll pair. Most of 
the phase change occurs over a distance that is small compared with the distance 
between the discommensurations, but large compared with I,. 

We noticed empirically that $(xn) may be closely approximated by rotating 
solutions $(x) to the pendulum equation a2$/ax2 = C sin $. Excellent nonlinear fits 
to the data can be constructed using these solutions : 

where am(u) is the amplitude of an elliptic integral of the first kind (Milne-Thomson 
1972). In  this expression, s is the distance between the discommensurations, and K ,  
a, and 6 are constants. The minus sign is chosen to describe compression of the rolls. 
The solid line in figure 10 ( b )  represents the nonlinear least-squares fit to our measured 
phase variation. We find that the data are quantitatively described by this function 
for a < 0.05. 
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FIQURE 10. (a )  Roll size (in units of Z1) across the sample shown in figure 9(a). Between the 
compressed roll regions, the pattern is nearly commensurate at 1/1. ( b )  Variation of the phase of 
the rolls across the sample. The solid line is a fitted solution to the pendulum equation, in which 
the best-fitting parameters are found to be: a, = 0.66; K = 3.40; s = 1570 pm; and S = 5.23 (see 
$5.1). 

FIGURE 11.  Photograph of a dislocation pair t h k  leads to a defect in the discommensuration 
lattice. 

Although most of the lattices are essentially two-dimensional, defects do occur. 
Sometimes the discommensurations are not strictly parallel to the rolls and terminate 
at dislocations in the roll pattern. An example of a dislocation pair is shown in 
figure 11. Another example is shown in the upper portion of figure 9 ( b ) ,  where a 
dislocation (not visible in the photograph) near the upper left corner causes the 
superlattice to shift towards the right. The spacing between the discommensura- 
tions remains constant except in the immediate vicinity of the defect. 

5.2.  Quasi-periodic sequences 

Another type of incommensurate ordering was found at large values of 01 between 
the C 113 and 112 regions of the phase diagram of figure 7. Two examples a t  different 
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FIGURE 12. Quasi-periodic sequences characterized by long and short blocks. (a) A sequence with 
additional short blocks (Z& = 0.429 and a = 0.114). (b )  A sequence with additional long blocks 
(Z& = 0.401 and a = 0.081). The sequence at the height of the arrows is LSLSLLSLSLSLLSLSLS. 

values of 1, are presented in figure 12. The rolls are strongly modulated by the forcing 
and are essentially parallel to the fingers of the interdigitated electrode. Large 
portions of both patterns resemble the C 215 state, shown in figure 6 ( b ) ,  in which 
the patterns may be subdivided into alternating long (L) and short (S) blocks 
consisting of 6 and 4 rolls respectively (see $4 .2 ) .  The difference between the 
incommensurate patterns of figure 12 and the C 215 state is the insertion of extra 
L’s or S’s into the commensurate sequence LSLSLS in order to accommodate the 
pattern to the forcing. In  figure 12(a), there are extra S’s; in figure 12(b) there are 
extra L’s. The average block size is still 1,. 

We believe that these patterns are incommensurate, with a novel type of structure. 
To understand them, a slightly modified form of the hull function, mentioned in $3,  
is used, in which the particles correspond to groups of rolls. In this case, A is taken 
to be the average block size l,, and the period off is denoted A f .  To describe the data 
it is not possible for f to be continuous, since X , + ~ - X ,  takes on only two discrete 
values: the width of either the long or short block. Lubensky suggested to us that 
f be a discontinuous periodic function, given by the expression 

f(nA) = a(nSZ>-~. 

Here a is a positive constant, and the function {nO} is defined to be equal to nO mod 1,  
where O is the ratio A / A f .  A graph of f(nA) is shown in figure 13(a) .  Nonlinear 
functions with discontinuities are also possible. 

With this choice for f, the expression for x, (apart from a constant) may be more 
usefully written as 

x, = nX+(L-8) [nO], 

where L. and X are the widths of the long and short blocks, and [nO] is the greatest 
integer less than or equal to nO. The behaviour of [na] is depicted graphically in 
figure 13(b)  for the case O = 0.46. For most successive values of n, the increase in 
[nOJ alternates between 0 and 1 .  There are, however, occasions in which two adjacent 
zeros occur. This can be seen for n = 16 and 17. If O is irrational, then the sequence 
of 1’s and 0’s never repeats. Thus for values of SZ nearly equal to 0.5, the positions 
x, increase by amounts generally alternating between L and 8 (see figure 13c). There 
are, however, occasional ‘insertions’ of either an S or an L. 

This approach of using a discontinuous function to describe quasi-periodic patterns 
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FIGURE 13. Explanation of the discontinuous function f(nA) used to describe quasi-periodic 
sequences. (a )  Graph off(nA) = u{nA/A,}-$z versus nA. The function has a period Af. ( b )  Graph 
of [nQ] for 52 = 0.46. This quantity usually increases by 1 for alternate values of n. However, at 
n = 16 and 17 (also n = 2 and 3), it  fails to increase. ( c )  Sequence of long (L) and short (S) blocks 
corresponding to L2 = 0.46. 

may be applied to the data by converting the observed pattern into an array of 1’s 
and O’s, as shown in figure 14(a).  (The long and short blocks are represented by 1 
and 0 respectively.) The solid lines indicate where there are two adjacent zeros. A 
number of dislocations are interspersed throughout the array, usually in pairs. 
Because of the dislocations, it is necessary to introduce a phase constant y in 
applying the model to the experimental data: x, = nS+ (L-8) [nQ+y] .  

A large portion of the sample may be fitted by this equation. Each horizontal 
sequence in the right two-thirds of the array can be exactly reproduced, using a 
starting value of n = 1 and values of 52 near 0.46. The quantity y is allowed to be 
different from line to line. A graph of Q for each row is shown in figure 14(b). The 
bars indicate the range of 52 that is consistent with the data. The small variations 
in Q over the pattern are probably due to the presence of slight inhomogeneities in 
the layer depth. This experimental limitation and the finite sample size leads to a 
somewhat inconclusive interpretation of the results. Nevertheless, the fits are 
successful enough that we consider these patterns to be incommensurate. This 
approach of using a discontinuous function to model the data is similar to recent 
efforts to describe certain incommensurate atomic arrays known as quasicrystals 
(Lubensky & Ingersent 1986). 

5.3. Three-dimensional flows 
The flows described up to this point are two-dimensional, except for the presence of 
defects. This is probably due to the oriented polymer coating that was applied to the 
electrodes to suppress three-dimensional effects. It is important to consider how the 
phenomena would be modified if no orientations1 preference is present. (Furthermore, 
one might ask what happens in an isotropic fluid.) If the polymer coating is simply 
eliminated, we find it is essentially impossible to produce an ordered array of rolls, 
because of apparently random variations in the director orientation. However, we 
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FIQURE 14. (a) Array of long (1) and short (0) blocks demonstrating possible quasi-periodic 
sequences. Figure 12(a) shows the region of the array within the brackets. The solid line separates 
two adjacent zeros, and the defects are marked with ‘X’.  (b) Fitted values of Q for each horizontal 
sequence in the right two-thirds of the array. The brackets indicate the possible range of 52. The 
variation in 52 with the pattern suggests that the layer depth is sligthly inhomogeneous. 

did investigate the effect of an alternate method of surface treatment, based on an 
evaporated SiO film (see 52) that apparently produces a weaker orientational 
preference than does the polymer coating. 

Over a wide range of roll sizes (84-116 pm) and forcing strengths, we found that 
the favoured structure is a three-dimensional flow, as shown in figure 15. (In this 
photograph, the electrode fingers are orientated a t  about 45’ in the counterclockwise 
direction with respect to the vertical. Though this seems awkward, the computed 
two-dimensional power spectra are easier to interpret if major peaks do not lie along 
the coordinate axes.) The pattern still consists of rolls, but their dominant axis is 
rotated by an angle of 8 = 19’ with respect to the electrode fingers, which are parallel 
to the axis labelled y. The rolls now are modulated by a regular lattice of kinks where 
they cross the electrode fingers. 
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FIGURE 15. (a )  Three-dimensional incommensurate structure with kinks (Z,,/Zl = 0.91). The electrode 
fingers are oriented along the (tilted) axis labelled y. However, the predominant roll orientation 
makes an angle 6' = 19" with respect to y. (b )  Corresponding two-dimensional power spectrum 
indicating that much of the power is off the p1 axis. The two dominant peaks are labelled 1 and 
2, where 1 is the wavenumber of the rotated rolls, and 2 lies on the qr axis and is due to the response 
of the system at the forcing wavenumber. 

The computed two-dimensional spectrum (figure 15b) shows that the pattern is 
multiply periodic with two dominant wavevectors. The first of these is associated 
with the peak labelled 1. It corresponds to intensity variations perpendicular to the 
axis of the rotated rolls. The next largest peak (2) is located near the origin along 
the axis labelled qz, and is a response due to the forcing with wavenumber l/Zl. More 
than 60 yo of the total power falls under these two peaks. All peaks in the spectrum 
lie on a two-dimensional reciprocal lattice spanned by these two basis vectors. 

In  order to determine whether there is any kind of 'lock-in', we studied the 
wavenumber q' of the dominant off-axis peak (1)  as a function of the wavenumber 
2k, of the unperturbed roll structure (see figure 16). This was accomplished by 
varying the layer thickness. We find no evidence of locking: q' varies smoothly with 
2k0. Furthermore, the data points lie close to the line q' = 2k0, indicating that the 
dominant periodicity is not much affected by the forcing; the primary means of 
accommodation to the perturbation is a rotation of the rolls. (Surprisingly, the 
rotation angle 13 remains fairly constant a t  the value 20" over a range of ko.) 

Finally we note that similar three-dimensional flows appear in another parameter 
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FIQTJRE 16. Variation of the wavenumber q‘ of the dominant off-axis peak with the unperturbed 
roll wavenumber 2k,. The data points lie close to the q’ = 2k, line, indicating that the rolls mainly 
rotate aa a result of the forcing. 

range, l,,/Zl = 0.65-0.70, provided that a is small ( w 0.03). The rolls slowly align 
parallel to the electrode fingers with a lock-in ratio of 2/3 as the forcing strength is 
increased. 

6. Discussion and conclusions 
These experiments reveal a wide variety of flows with multiple periodicities in the 

presence of periodic forcing. We believe that most of these phenomena would be 
exhibited by ordinary Rayleigh-BBnard convection, though we have used an EHD 
instability for reasons given earlier. Even for thermal convection, it does not seem 
likely that direct solution of the hydrodynamic equations without approximation 
will be practical. On the other hand, many of our observations can be interpreted 
with the aid of amplitude equations. 

Before discussing the observations, we point out that many important issues have 
not been addressed in these experiments. The predictions of Kelly & Pal (1978) and 
Pal & Kelly (1978, 1979) on the modification of the bifurcation by the forcing have 
not been tested. Also, our experiments have been confined to small E ,  where the flows 
are time independent. 

We note that the distinctions between commensurate and incommensurate states 
are sometimes difficult to make even with samples of several hundred rolls. Also, it 
is often impracticable to distinguish between defects and dislocations that would 
occur under ideal circumstances, and those that result from imperfect sample 
preparation (for example imperfect alignment of the director at the electrode), or 
from failure to wait sufficiently long. 

Coullet’s ( 1986) work shows that the amplitude-equation approach is capable of 
describing the simplest phase-locked commensurate state and the nearby incommen- 
surate state. The latter is described quantitatively by a phase variable whose 
dependence on position is given by rotating solutions to the pendulum equation. The 
generality of this approach suggests that it should be applicable near the threshold 
of any instability yielding a spatially periodic flow. The physical quantities specific 
to each system do not affect the form of the amplitude equation. 

Furthermore, we note that within the framework of the amplitude equation, stable 
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flows may be regarded as minimizing a certain potential. In this experiment, i t  has 
the same form as the Hamiltonian of the FK model in the continuum limit. The 
existence of such a potential for weak forcing near threshold is responsible for the 
close correspondence between the behaviour of this non-equilibrium system and 
analogous commensurate and incommensurate phenomena in statistical mechanics. 

We believe that the three-dimensional flows (figure 15) can be explained by a 
suitable extension of the amplitude equation to two horizontal dimensions, as 
proposed by Lubensky & Ingersent (1986). These flows may also be related to the 
oblique-roll states of Pal & Kelly (1979). The basic physical reason for the three- 
dimensionality within the framework of the amplitude equation is that lower values 
of the potential can be reached if roll compression (or stretching) is avoided by taking 
advantage of the other horizontal dimension. 

Unfortunately, the amplitude equation cannot explain all of the observations in 
these experiments. For example, the high-order commensurate phases, which have 
rapid spatial variations in the roll amplitudes and phases, cannot be predicted by 
Coullet’s theory (or any approach involving amplitude equations). Their internal 
structure (figure 5) is not understood. Similarly, the incommensurate states that we 
model as quasi-periodic sequences described by a discontinuous function f (nA ) also 
cannot be treated by the basic amplitude equation. It remains to be seen whether 
the description given in $5.2, which is based on the behaviour of the discrete FK 
model, can be fundamentally justified for hydrodynamics. Certainly, other features 
similar to the FK model are present in our data: for example, the commensurate 
tongues in the phase diagram that usually widen as a increases, and the narrow 
high-order commensurate tongues. 

In a separate investigation (Lowe & Gollub 1985b), we have utilized the experi- 
mental methods described in this paper to study the Eckhaus instability, in which 
a convective flow with wavenumber far from the critical value goes unstable with 
respect to long-wavelength modulations, yielding a transient flow having several 
periodicities. This phenomenon may be understood using amplitude equations. 

We suggest that studies of the response of hydrodynamic systems to spatially 
periodic forcing can potentially yield surprises in addition to those presented here, 
because of the profound effect of altering the basic symmetry of the system. Much 
theoretical work remains to be done in attempting to understand these striking 
phenomena. 

This work was supported by the National Science Foundation MRL program 
under DMR-8519059, and by the NSF Fluid Mechanics Program under 
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